Reverberant speech recognition combining deep neural networks and deep autoencoders augmented with a phone-class feature
نویسندگان
چکیده
We propose an approach to reverberant speech recognition adopting deep learning in the front-end as well as back-end of a reverberant speech recognition system, and a novel method to improve the dereverberation performance of the front-end network using phone-class information. At the front-end, we adopt a deep autoencoder (DAE) for enhancing the speech feature parameters, and speech recognition is performed in the back-end using DNN-HMM acoustic models trained on multi-condition data. The system was evaluated through the ASR task in the Reverb Challenge 2014. The DNN-HMM system trained on the multi-condition training set achieved a conspicuously higher word accuracy compared to the MLLR-adapted GMM-HMM system trained on the same data. Furthermore, feature enhancement with the deep autoencoder contributed to the improvement of recognition accuracy especially in the more adverse conditions. While the mapping between reverberant and clean speech in DAE-based dereverberation is conventionally conducted only with the acoustic information, we presume the mapping is also dependent on the phone information. Therefore, we propose a new scheme (pDAE), which augments a phone-class feature to the standard acoustic features as input. Two types of the phone-class feature are investigated. One is the hard recognition result of monophones, and the other is a soft representation derived from the posterior outputs of monophone DNN. The augmented feature in either type results in a significant improvement (7–8% relative) from the standard DAE.
منابع مشابه
Reverberant Speech Recognition Combining Deep Neural Networks and Deep Autoencoders
We propose an approach to reverberant speech recognition adopting deep learning in front end as well as back end of the system. At the front end, we adopt a deep autoencoder for enhancing the speech feature parameters, and the recognition is performed using a DNN-HMM acoustic models trained on multi-condition data. The system was evaluated through the ASR task in Chime Challenge 2014. The DNN-H...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015